We will define the language, L, of our rational number calculator program.
Define the set of non-terminal symbols to be

$$
\begin{aligned}
N= & \{\text { prog, expr, empty, quit, eval, store, add, mult, neg, exp }, \\
& \text { fact, term, rnd,r, abs, recall, par, dec, int, ws, digit, prev, l\}. }
\end{aligned}
$$

Define the set of terminal symbols to be

$$
\begin{aligned}
\Sigma= & \{0,1,2,3,4,5,6,7,8,9, .,+,-, *, /, \wedge,!, \bmod , \mid(,), \text { round },,, @, s, \\
& \text { space, rand, tab }, l f, \text { cr }, q\} .
\end{aligned}
$$

Define the production rules, P, as the following:

1. prog \rightarrow expr \mid expr $l \mid$ expr l prog
2. expr \rightarrow empty \mid quit \mid eval \mid store
3. empty \rightarrow ws
4. quit \rightarrow ws q ws
5. eval \rightarrow ws add ws
6. store \rightarrow ws s ws
7. add \rightarrow add $w s+$ ws mult \mid add ws - ws mult \mid mult
8. mult \rightarrow mult ws * ws neg \mid mult ws / ws neg \mid mult ws mod ws neg \mid neg
9. neg \rightarrow - ws neg | exp
10. exp \rightarrow fact ws ^ ws neg \mid fact
11. fact \rightarrow fact! |term
12. term \rightarrow dec \mid par \mid recall \mid abs $|r| r n d$
13. $r n d \rightarrow \operatorname{rand}(w s) \mid \operatorname{rand}(w s$ add $w s, w s$ add $w s)$
14. $r \rightarrow \operatorname{round}(w s$ add $w s$, ws digit $w s)$
15. abs $\rightarrow \mid$ ws add ws \mid
16. recall \rightarrow @ @prev
17. $\operatorname{par} \rightarrow$ (ws add $w s)$
18. dec \rightarrow int | int.int
19. int \rightarrow digit \mid digit int
20. ws \rightarrow space $w s|t a b w s| \epsilon$
21. digit \rightarrow prev $|0| 9$
22. prev $\rightarrow 1|2| 3|4| 5|6| 7 \mid 8$
23. $l \rightarrow l f \mid c r l f$

Note that the use of spaces above is purely for visualization purposes (e.g., digit int does not actually have a space). Define the start symbol to be prog. Define the unambiguous, context-free grammar to be

$$
G=(N, \Sigma, P, \operatorname{prog}) .
$$

Let $\mathcal{L}(G)$ be the language generated from G. When @ is not immediately followed by a prev, let it mean @1. @prev represents the prev ${ }^{\text {th }}$ most-recent result that has been stored from a store expression. lf is the Unicode scalar value $\mathrm{U}+000 \mathrm{~A}, c r$ is the Unicode scalar value $\mathrm{U}+000 \mathrm{D}$, space is the Unicode scalar value $\mathrm{U}+0020$, tab is the Unicode scalar value $\mathrm{U}+0009$, and ϵ is the empty string. We define $\mathbb{Q} \subset L \subset \mathcal{L}(G)$ with \mathbb{Q} representing the field of rational numbers such that L extends \mathbb{Q} with the ability to recall the previous one to eight store results as well as adds the unary operators $\|,-$, and ! as well as the binary operators ^ and mod to mean absolute value, negation, factorial, exponentiation, and modulo respectively.
Note that this means for mult/exp, exp does not evaluate to 0 . Similarly, term^exp is valid iff term evaluates to 1 , term evaluates to 0 and exp evaluates to a non-negative rational number- 0^{0} is defined to be 1 -or term evaluates to any other rational number and exp evaluates to an integer or $\pm 1 / 2$. In the event that exp is $\pm 1 / 2$, then term must be the square of a rational number. ! is only defined for non-negative integers. @prev is only defined iff at least prev number of previous store expressions have been evaluated.
\bmod is defined iff the left operand evaluates to an integer and the right operand evaluates to a non-zero integer. This operator returns the minimum nonnegative integer, r, that satisfies the equation

$$
n \bmod m=r=n-q * m
$$

for $n, q \in \mathbb{Z}, m \in \mathbb{Z} \backslash\{0\}$, and $r \in \mathbb{N}$.
It also adds the function round which rounds the passed expression to digitnumber of fractional digits. The function rand when passed no arguments generates a random 64-bit integer. When the function is passed two arguments, it generates a random 64-bit integer inclusively between the two arguments. In the latter case, the second argument must evaluate to a number greater than or equal to the first; and there must be at least one 64 -bit integer in that interval.

From the above grammar, we see the expression precedence in descending order is the following:

1. number literals, ()$, @, \|, \operatorname{round}(), \operatorname{rand}()$
2.!
2.
3. - (the unary negation operator)
4. $*, /, \bmod$
5. + , -
with ^ being right-associative and the rest of the binary operators being leftassociative. Last, for $j \in \mathbb{N}$ and $d_{j} \in\{0,1,2,3,4,5,6,7,8,9\} \subset \mathbb{Z}$, we have

$$
\begin{aligned}
d_{0} d_{1} \cdots d_{n} . d_{n+1} \cdots d_{n+i}= & \left(d_{0} * 10^{n}+d_{1} * 10^{n-1}+\cdots+d_{n} * 10^{0}\right. \\
& \left.+d_{n+1} * 10^{-1}+\cdots+d_{n+i} * 10^{-i}\right)
\end{aligned}
$$

where for $k \in \mathbb{N}$

$$
10^{k}=\overbrace{10 * 10 * \cdots * 10}^{k}
$$

and for $l \in \mathbb{Z}^{-}$

$$
10^{l}=\overbrace{1 / 10 * 1 / 10 * \cdots * 1 / 10}^{|l|}
$$

As a consequence of above, we have the following example:

$$
1 / 1.5=1 /(3 / 2)=2 / 3 \neq 1 / 6=1 / 3 / 2
$$

For $n \in \mathbb{N}$ we define the factorial operator as

$$
n!=n *(n-1) * \cdots * 1
$$

which of course equals 1 when $n=0$.
The empty expression (i.e., expression consisting of spaces and tabs) returns the result of the previous eval expression in decimal form - in the event there is no such previous expression, it returns the empty string. The minimum number of digits will be used; if the value requires an infinite number of digits, then the value will be rounded to 9 fractional digits. The quit expression (i.e., expression consisting of spaces, tabs, and exactly one q) causes the program to terminate. The store expression (i.e., expression consisting of spaces, tabs, and exactly one $s)$ stores and returns the result from the previous eval expression and can be recalled with @. At most 8 results can be stored; after which the oldest result is overwritten. Stored results cannot be unstored.

