
We will define the language, L, of our rational number calculator program.

Define the set of non-terminal symbols to be

N = {prog, expr, empty, quit, eval, store, add,mult, neg, exp,

fact, term, rnd, r, abs, recall, par, dec, int, ws, digit, prev, l}.

Define the set of terminal symbols to be

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .,+,−, ∗, /, ˆ, !,mod, |(,), round, , ,@, s,

space, rand, tab, lf, cr, q}.

Define the production rules, P , as the following:

1. prog → expr | expr l | expr l prog

2. expr → empty | quit | eval | store

3. empty → ws

4. quit → ws q ws

5. eval → ws add ws

6. store → ws s ws

7. add → add ws + ws mult | add ws − ws mult | mult

8. mult → mult ws ∗ ws neg | mult ws / ws neg | mult ws mod ws neg | neg

9. neg → − ws neg | exp

10. exp → fact ws ˆ ws neg | fact

11. fact → fact! | term

12. term → dec | par | recall | abs | r | rnd

13. rnd → rand(ws) | rand(ws add ws,ws add ws)

14. r → round(ws add ws,ws digit ws)

15. abs → |ws add ws|

16. recall → @ | @prev

17. par → (ws add ws)

18. dec → int | int.int

19. int → digit | digit int

20. ws → space ws | tab ws | ϵ

21. digit → prev | 0 | 9

22. prev → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

23. l → lf | cr lf

Note that the use of spaces above is purely for visualization purposes (e.g.,
digit int does not actually have a space). Define the start symbol to be prog.
Define the unambiguous, context-free grammar to be

G = (N,Σ, P, prog).

Let L(G) be the language generated from G. When @ is not immediately
followed by a prev, let it mean @1. @prev represents the prevth most-recent
result that has been stored from a store expression. lf is the Unicode scalar
value U+000A, cr is the Unicode scalar value U+000D, space is the Unicode
scalar value U+0020, tab is the Unicode scalar value U+0009, and ϵ is the
empty string. We define Q ⊂ L ⊂ L(G) with Q representing the field of rational
numbers such that L extends Q with the ability to recall the previous one to
eight store results as well as adds the unary operators ||, −, and ! as well as
the binary operators ˆ and mod to mean absolute value, negation, factorial,
exponentiation, and modulo respectively.

Note that this means for mult/exp, exp does not evaluate to 0. Similarly,
termˆexp is valid iff term evaluates to 1, term evaluates to 0 and exp evaluates
to a non-negative rational number—00 is defined to be 1—or term evaluates
to any other rational number and exp evaluates to an integer or ±1/2. In the
event that exp is ±1/2, then term must be the square of a rational number. !
is only defined for non-negative integers. @prev is only defined iff at least prev
number of previous store expressions have been evaluated.

mod is defined iff the left operand evaluates to an integer and the right operand
evaluates to a non-zero integer. This operator returns the minimum non-
negative integer, r, that satisfies the equation

n mod m = r = n− q ∗m

for n, q ∈ Z, m ∈ Z\{0}, and r ∈ N.

It also adds the function round which rounds the passed expression to digit-
number of fractional digits. The function rand when passed no arguments
generates a random 64-bit integer. When the function is passed two arguments,
it generates a random 64-bit integer inclusively between the two arguments. In
the latter case, the second argument must evaluate to a number greater than or
equal to the first; and there must be at least one 64-bit integer in that interval.

From the above grammar, we see the expression precedence in descending order
is the following:

1. number literals, (), @, ||, round(), rand()

2. !

3. ˆ

4. − (the unary negation operator)

5. ∗, /, mod

6. +, −

with ˆ being right-associative and the rest of the binary operators being left-
associative. Last, for j ∈ N and dj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ⊂ Z, we have

d0d1 · · · dn.dn+1 · · · dn+i = (d0 ∗ 10n + d1 ∗ 10n−1 + · · ·+ dn ∗ 100

+ dn+1 ∗ 10−1 + · · ·+ dn+i ∗ 10−i)

where for k ∈ N

10k =

k︷ ︸︸ ︷
10 ∗ 10 ∗ · · · ∗ 10

and for l ∈ Z−

10l =

|l|︷ ︸︸ ︷
1/10 ∗ 1/10 ∗ · · · ∗ 1/10 .

As a consequence of above, we have the following example:

1/1.5 = 1/(3/2) = 2/3 ̸= 1/6 = 1/3/2.

For n ∈ N we define the factorial operator as

n! = n ∗ (n− 1) ∗ · · · ∗ 1

which of course equals 1 when n = 0.

The empty expression (i.e., expression consisting of spaces and tabs) returns the
result of the previous eval expression in decimal form—in the event there is no
such previous expression, it returns the empty string. The minimum number of
digits will be used; if the value requires an infinite number of digits, then the
value will be rounded to 9 fractional digits. The quit expression (i.e., expression
consisting of spaces, tabs, and exactly one q) causes the program to terminate.
The store expression (i.e., expression consisting of spaces, tabs, and exactly one
s) stores and returns the result from the previous eval expression and can be
recalled with @. At most 8 results can be stored; after which the oldest result
is overwritten. Stored results cannot be unstored.

